
DEVELOPING AN APP
USING THE REST API
AND WORDPRESS
BY TOM EWER

Developing an App Using the REST API and WordPress

CHAPTER 1: INTRODUCTION	 4

A Brief Note on My Background	 5

Why Now Is the Time to Embrace the REST API	 6

What We’ll Be Looking to Do in This ebook	 6

Let’s Get Started 	 7

CHAPTER 2: ADDING AND TESTING OUR DATA 	 8

Our Local WordPress Setup	 9

Is This Thing On?	 10

What Is the REST API Actually Doing?	 11

Cranking Through Basic CRUD	 12

Conclusion	 15

CHAPTER 3: CHOOSING AND TESTING A FRONT END SOLUTION 	 16

JavaScript Is Eating the World	 17

The Leading JavaScript Framework Contenders	 18

Introducing React from Facebook	 19

Is This Thing On? (Redux)	 19

Performing A Basic React/REST API Test	 21

Conclusion	 22

CONTENTS

Developing an App Using the REST API and WordPress

CHAPTER 4: CREATING OUR REACT-POWERED WORDPRESS SITE	 23

What We’re Trying to Build	 24

Creating Our First Component	 25

What Just Happened?	 26

Sprinkling in Some Style	 27

Adding Child Components	 28

A Quick Word About Data In React	 29

Talking To The WordPress REST API	 30

Displaying External HTML Content and Adding Interaction With a Basic Button	 31

Conclusion	 32

CHAPTER 5: ADDING CUSTOM ENDPOINTS AND EXTRA TOUCHES	 33

Introducing Custom Endpoints in the REST API	 34

Adding Our Own Custom Endpoint	 36

Tidying Our HTML Output From WordPress	 38

Adding Some Slight Button Styling	 41

Conclusion 	 42

CHAPTER 6: EXPLORING THE WEB WITH THIRD-PARTY APIS	 43

The Wider Programmatic World Awaiting WordPress	 44

Conclusion	 45

AB0UT THE AUTHOR: TOM EWER	 46

CONTENTS

4

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

CHAPTER 1:
INTRODUCTION

5

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

CHAPTER 1

Excitement over the REST API has been building for what seems like an
eternity, but we’re still pretty much at the starting gate in terms of what it’s
actually going to mean for site owners and developers.

Though I’ve written extensively about the potential implications of the REST
API, I’ve been holding back on actually diving in and getting my hands dirty.
With the REST API finally taxiing on the runway, now is a great time to grasp
that nettle and really start digging into detail.

Over the course of this ebook, I’ll be taking the
new hotness for a spin by putting together a
simple JavaScript app that uses the REST API to
power its content. It promises to be an intense
learning experience, but one that will hopefully
serve others who are coming from a non-
technical background as well.

A BRIEF NOTE ON MY BACKGROUND

Though WordPress has long been a passion of mine, I’m a writer and
entrepreneur by trade. I can’t pretend to be coming at this project
from any type of serious development background. “Knows just about
enough to be dangerous” would be how I’d charitably classify my coding
experience to date.

So, this ebook won’t be quite the deep dive you might expect from a
theming professional such as Jack Lenox, or a senior web developer such as
Ramsay Lanier. It should also be no great surprise that I’m not approaching
this from the point of view of an established top-tier digital agency looking

to kick the tires of the latest technology.

With those caveats out of the way, let’s briefly recap why now is a great time
to roll up your sleeves and use the REST API in earnest.

This ebook
is geared
toward the
average
WordPress
user looking
to get to grips
with the next
generation
of the
platform via
a practical,
exploratory
project.

http://v2.wp-api.org
https://torquemag.io/2016/06/4-exciting-revenue-routes-rest-api-opens/
https://torquemag.io/2016/05/rest-api-ready/
http://wordpress.tv/2015/12/04/jack-lenox-building-themes-wp-rest-api/
https://medium.com/front-end-developers/wordpress-with-node-react-and-graphql-part-1-introduction-ee0fc491730e
https://medium.com/front-end-developers/wordpress-with-node-react-and-graphql-part-1-introduction-ee0fc491730e
http://tri.be/blog/redux-react-and-the-wordpress-rest-api-v2

6

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

WHY NOW IS THE TIME TO EMBRACE THE REST API

With the recent inclusion of REST API content endpoints in 4.7, and Matt
Mullenweg’s 2016 State of the Word, it’s made crystal clear which way the
wind is blowing in the world of WordPress. To put it in a nutshell, the REST
API is going to be at the center of the next stage of the platform’s future,
and developers are going to have to get on board with JavaScript sooner
rather than later.

We’ve already seen entire conferences devoted to exploring the implications
of the REST API, and increasingly large real-world projects basing themselves
around it, despite its late arrival. From Microsoft to the New York Times,
blue-chip companies worldwide are chomping at the bit to explore its power.

If you’re a theme or plugin developer, you can rest assured that the
vast majority of your competition are already, at the very least, actively
researching the topic. If you’re a site owner, you can expect the next five
years or more of your site’s development to be significantly defined by the
possibilities that the REST API opens up. No matter how you look at it, now
is the time to get on board this particular jet.

WHAT WE’LL BE LOOKING TO DO IN THIS EBOOK

In this ebook, we’re going to start from scratch with a local install, and use
WordPress to house a collection of quotes from a great American original
and author of Walden — Henry David Thoreau. With our words of wisdom
safely stored in the WordPress back end, we’ll interact with them via the
REST API, and build out a simple JavaScript-powered front end to display
them in a variety of ways using Facebook’s React library.

Along the way, we’ll touch on subjects such as alternative front end
solutions, integration with mobile apps, design tips and tweaks, and
experimenting with third-party APIs for added functionality. By the time
we’re finished, you should have a much more grounded and practical view
of what the REST API is actually all about.

We’ll be using WordPress 4.7.3 running on a local development environment
and JavaScript React. It will also require a lot of patience and persistence to
put together our finished project. Stick along for the ride and you’re sure to
pick up a ton of useful info along the way!

The arrival of
Calypso points
the way to
the future of
WordPress.

CHAPTER 1

http://wordpress.tv/2015/12/07/matt-mullenweg-state-of-the-word-2015/
https://wptavern.com/a-day-of-rest-conference-successful-81-would-attend-again
https://wptavern.com/guggenheim-org-relaunches-on-wordpress-using-the-wp-rest-api
https://torquemag.io/2015/12/use-cases-wp-rest-api-wordcamp-us-edition/
https://en.wikipedia.org/wiki/Walden
https://en.wikipedia.org/wiki/Henry_David_Thoreau
https://facebook.github.io/react/
https://codex.wordpress.org/Version_4.7.3
https://facebook.github.io/react/
https://developer.wordpress.com/calypso/
https://developer.wordpress.com/calypso/

7

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

LET’S GET STARTED

The tools to get cracking with the REST API already exist, it’s used in
production by several major sites worldwide, and it won’t be long until it hits
the mainstream WordPress world in earnest. There’s simply never been a
better time to learn about it.

You won’t need a computer science degree to follow along – just a little time,
patience, and perseverance.

Aimed at a
relatively
non-technical
audience,
this ebook
will teach
users how
to develop a
REST API app
from scratch
and will take
you from zero
to hero in no
time at all.

CHAPTER 1

8

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

CHAPTER 2:
ADDING AND
TESTING OUR
DATA

9

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

It’s now time to get down to business and start
building the foundations of our app.

We’ll kick things off by getting some core data into a local install of
WordPress, and then start exploring some background concepts and the
general set of options available to us. We’ll do this by testing the basic
reading and writing functionality of the REST API with the help of some
handy tools which make it easy for non-technical users to follow along.

By the end of this chapter, we should understand what the REST API actually
does, be confident we can interact with it locally, and be in good shape
for taking things to the next level in future chapters. Let’s start with a brief
overview of the local setup being used here.

OUR LOCAL WORDPRESS SETUP

I’m running a fresh local install of WordPress 4.7.3 on OS X with Twenty
Seventeen installed as the theme — it’s as vanilla as it gets. In honor of the
man who will be providing most of the content we’ll be working with, the
local URL is http://walden.dev/.

I’ve also set my permalinks to use post names, as shown below.

For simplicity, I’m using the free version of DesktopServer, which enables you
to easily manage up to three local WordPress installs. It takes care of installing
local web servers and a host of other potentially frustrating configuration
issues that can occur with host files and the like behind the scenes.

CHAPTER 2

https://wordpress.org/news/2017/03/wordpress-4-7-3-security-and-maintenance-release/
https://wordpress.org/themes/twentyseventeen
https://wordpress.org/themes/twentyseventeen
http://walden.dev/
https://serverpress.com/get-desktopserver/

10

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

If you’d prefer to set up your local WordPress environment by hand, you can
find instructions for doing so on Mac and Windows from Nick Schäferhoff on
Torque. Fair warning: if this is your first time attempting to do this, be prepared
to exercise a little patience and persistence if you run into problems!

I’ve also had a browse over at Goodreads and loaded a number of Henry David
Thoreau quotes into the site as posts. So, at this stage, we have a site up and
running, and some content loaded on to it. Let’s move on to the REST API.

IS THIS THING ON?

We’ll get into more technical detail in a second, but the first thing to take
on board is that the REST API has opened up a route to our site’s content.
We should now be able to access data on the site directly via an HTTP
request (i.e. if we type in the right URL in a browser, we should expect to see
structured JSON data being returned).

Let’s briefly test this in a quick and dirty way. Our local URL is http://walden.
dev/. According to the front page of the docs, it should be a piece of cake to
return a list of posts.

Let’s put that claim to the test and ask for a list of posts by typing in the
address http://walden.dev/wp-json/wp/v2/posts.

DesktopServer helps keep things simple.

CHAPTER 2

https://torquemag.io/2015/11/install-wordpress-locally-xampp-windows-mac/
https://www.goodreads.com/author/quotes/10264.Henry_David_Thoreau
https://en.wikipedia.org/wiki/Henry_David_Thoreau
https://en.wikipedia.org/wiki/Henry_David_Thoreau
https://www.copterlabs.com/json-what-it-is-how-it-works-how-to-use-it/
http://walden.dev/
http://walden.dev/
https://developer.wordpress.org/rest-api/
http://walden.dev/wp-json/wp/v2/posts
https://serverpress.com/get-desktopserver/

11

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

We have liftoff! It may look a bit of a mess in the browser, but we’ve
successfully asked for information via the REST API, and received
structured data in response. The REST API is active, and it’s doing – at least
on a very basic level – what it’s supposed to. Now it’s time to fill in some of
the blanks around what we just did.

WHAT IS THE REST API ACTUALLY DOING?

Let’s start with what a REST API actually is.

An Application Programming Interface (API) is simply a documented set of
instructions for programmatically interacting with an application’s data.
That’s a fancy way of saying that it enables one piece of software to talk to
another. A REST API is a type of API that follows certain rules about getting
data in and out of an application.

You interact with an API via an HTTP web request by sending a request to
the server and getting a structured response back. Usually, your request
is asking for some sort of action to be taken, and there are four standard
things you might be looking to do:

1.	 POST (Create)

2.	 GET (Retrieve)

3.	 PUT (Update)

4.	 DELETE (Delete)

The acronym CRUD is typically used to describe this set of actions, and they
cover the vast majority of things you might be trying to do on the average
site or application. These actions are carried out by some type of resource –
a thing or object that we want something to happen to.

In the case of WordPress, the REST API currently enables us to interact with
12 different types of WordPress objects:

1.	 Posts

2.	 Post Revisions

3.	 Pages

4.	 Media

5.	 Post Types

6.	 Post Statuses

7.	 Comments

8.	 Taxonomies

9.	 Categories

10.	 Tags

11.	 Users

12.	 Settings

CHAPTER 2

There’s an
excellent
overview of
what both
concepts
mean in the
video below.

Josh Pollock’s ebook The Ultimate
Guide to the WordPress REST API is
another great resource if you want
to dive deeper.

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://developer.wordpress.org/rest-api/reference/posts/
https://developer.wordpress.org/rest-api/reference/post-revisions/
https://developer.wordpress.org/rest-api/reference/pages/
https://developer.wordpress.org/rest-api/reference/media/
https://developer.wordpress.org/rest-api/reference/post-types/
https://developer.wordpress.org/rest-api/reference/post-statuses/
https://developer.wordpress.org/rest-api/reference/comments/
https://developer.wordpress.org/rest-api/reference/taxonomies/
https://developer.wordpress.org/rest-api/reference/categories/
https://developer.wordpress.org/rest-api/reference/tags/
https://developer.wordpress.org/rest-api/reference/users/
https://developer.wordpress.org/rest-api/reference/settings/
https://www.youtube.com/watch?v=7YcW25PHnAA
http://hs.wpengine.com/torque-wordpress-rest-api-ebook-torque?utm_source=hubspot&utm_medium=torque&utm_campaign=701d0000001O1Jr&utm_term=torque-promotion&utm_content=wp-api-ebook
http://hs.wpengine.com/torque-wordpress-rest-api-ebook-torque?utm_source=hubspot&utm_medium=torque&utm_campaign=701d0000001O1Jr&utm_term=torque-promotion&utm_content=wp-api-ebook

12

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

We’ll be sticking almost exclusively to posts in this
ebook, but as the documentation says, “chances
are, if you can do it with WordPress, the WP API
will let you do it.” With that in mind, let’s kick the
tires a little further on our local site.

CRANKING THROUGH BASIC CRUD

In order to run some simple local tests, we’re going to use the Postman
Chrome Extension. It’s a handy tool that’ll enable us to interact directly with
the API without having to crank out any code (the REST Easy add-on does
much the same on Firefox). We’ll use Postman to quickly test some core
CRUD functionality and make sure everything’s working.

We know that the basic retrieve functionality is working, but let’s double
check by calling a single post. The Retrieve a Post section of the reference
documentation shows us we can do this using a GET request and a post
id: GET /wp/v2/posts/<id>. Post ID 4 happens to be a favorite of mine on the
local site, so I’ve punched it into Postman:

Now let’s look at creating a post. I’d like to add this pithy little number: “It’s
not what you look at that matters, it’s what you see.”

CHAPTER 2

The Postman Chrome Extension helps us quickly test the REST API.

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://addons.mozilla.org/en-US/firefox/addon/rest-easy/
https://developer.wordpress.org/rest-api/reference/posts/
https://developer.wordpress.org/rest-api/reference/posts/

13

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

The eagle-eyed amongst you will have spotted some text saying No Auth
under the Authorization tab in the screenshot above. For requests that
involve ‘write’ operations (i.e. creating, updating, and deleting), we’re going
to have to prove our credentials. If we try a quick test without authorizing,
we’ll rightfully be shown the door:

CHAPTER 2

Presto!
The REST
API pops
back some
timeless
wisdom and
the various
parts of the
data are
nicely broken
out in the
Postman
interface.

14

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

Authentication is a whole topic unto itself with
the REST API, but to quickly test things locally,
we’ll be using the handy Basic Auth plugin to
get us past the virtual bouncers.

This enables us to simply use our standard login details via Postman. In
the instance below, I’ve passed through the content and title of a new
quote via POST.

CHAPTER 2

https://developer.wordpress.org/rest-api/using-the-rest-api/authentication/
https://github.com/WP-API/Basic-Auth

15

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

Things look good on the Postman side of things, but let’s pop into the back
end to make sure:

Hooray! It worked! You’ll notice the status is set to Draft, as I forgot to
specify it via the API call. I’ll leave it as an exercise for the reader to work
out how to change that via the API itself. The combination of Postman, the
relevant REST API posts documentation, and the Basic Auth plugin should
enable you to poke around for a solution!

CONCLUSION

We’ve covered a lot of ground in a short space of time, and introduced some
practical ways for more non-technical users to quickly interact with the REST
API directly. Let’s review what we have done so far:

1.	 Set up a simple local install and populated it with content.

2.	 Covered the basic concepts of REST APIs in general, and what this one can be
used for in WordPress.

3.	 Confirmed that we can get data in and out of WordPress via the REST API

CHAPTER 2

https://developer.wordpress.org/rest-api/reference/posts/

16

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

CHAPTER 3:
CHOOSING AND
TESTING A FRONT
END SOLUTION

17

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

In this
chapter,
it’s time to
consider how
to handle
things on the
front end.

So far in this ebook, we’ve loaded some data into WordPress to play with
and made sure we can access it via the REST API. Along the way, we’ve
introduced a number of core concepts and simple tools you can use to start
experimenting yourself, even if you’re not a tech whizz.

We need a nice framework to pull data out of WordPress via the REST API
and display it. It’s almost certainly going to involve a JavaScript-powered
solution. But which one?

That’s exactly the question we’ll be pondering below. We’ll briefly survey
the landscape of possible options, select one and introduce it, and then
look at simple steps to get up and running. Let’s start, though, with a quick
reminder of why JavaScript makes sense in this context.

JAVASCRIPT IS EATING THE WORLD

JavaScript, as Kevin Lacker recently put it, is eating the world. It’s come a
long way from its origins as a hastily put together short-term solution at
Netscape and is now, by some measures, the most popular programming
language in the global development community. In terms of front end web
development, in particular, it’s fair to say that JavaScript is effectively the
lingua franca of the web these days.

CHAPTER 3

Calypso is built on a modern JavaScript stack.

https://torquemag.io/2016/07/developing-rest-api-app-adding-testing-data/
https://www.youtube.com/watch?v=jFU-wc28lF4
https://en.wikipedia.org/wiki/JavaScript#Beginnings_at_Netscape
https://en.wikipedia.org/wiki/JavaScript#Beginnings_at_Netscape
http://www.eweek.com/blogs/careers/javascript-most-popular-language-stack-overflow-report
http://www.eweek.com/blogs/careers/javascript-most-popular-language-stack-overflow-report
https://developer.wordpress.com/calypso/

18

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

JavaScript is
also blessed
with a number
of stable
and mature
front end
frameworks
that developers
can use to work
quickly and
effectively.

It’s also, as Matt Mullenweg was keen to stress in his 2015 State of the Word
address, very much the future of WordPress. The recent arrival of Calypso
dramatically pointed towards where the platform is heading – a stable and
secure background WordPress core, housing data that’s consumed by an ever-
increasing set of wider external services, many of them powered by JavaScript.

Let’s move on to look at some of the main ones.

THE LEADING JAVASCRIPT FRAMEWORK CONTENDERS

As with any other programming language, there’s a huge amount to be said
for sticking to DRY and KISS principles and using some sort of framework to
take care of a lot of the heavy lifting when you’re dealing with JavaScript.

A baffling number of JavaScript frameworks have winked in and out of
existence over the last few years, but in terms of stability and active
development, the practical choice here basically boils down to one of four:

1.	 Backbone.js - Created by Jeremy Ashkenas, Backbone was one of the
first frameworks out of the starting gate back in 2010. Its combination
of compactness and flexibility led to the early adoption by an impressive
list of high-profile sites, and projects including WordPress.com and
WordPress core.

2.	 Ember.js - Where Backbone presents a deliberately stripped-down set
of possibilities to build off, Ember is a substantially more ambitious and
opinionated affair. The framework was created in 2011 by Yehuda Katz of
jQuery and Ruby on Rails fame, and is designed to help developers tackle
large-scale projects quickly and effectively. It can be seen in action on a host
of marquee sites including Discourse, Groupon, and LivingSocial.

3.	 Angular.js - Billing itself as a “Superheroic JavaScript MVW Framework”,
AngularJS is Google’s dog in the framework fight. It offers a relatively
easy learning curve and a thriving worldwide community of users. The
framework’s move from Version One to Version Two was a little controversial,
however, and it does require a bit of performance-related hand-holding
when deployed at scale.

4.	 React - Arriving in 2013, Facebook’s React is a more recent addition to
the field but has quickly attracted an army of enthusiastic early adopters
including (somewhat obviously) Facebook itself, Instagram, Flipboard, Netflix,
and a host of others. React has won plaudits for its speed, comparative
simplicity, and easy mobile integration in the form of React Native.

The solution we’ll be using to power our own humble app is, in fact, React.
It’s arguably the most modern of the bunch and promises an onboarding
process that won’t completely melt the minds of non-developers. With the
ongoing dominance of services such as Facebook and Instagram who rely
on it, it also won’t be going out of fashion any time soon.

CHAPTER 3

https://ma.tt/2015/12/state-of-the-word-2015/
https://ma.tt/2015/12/state-of-the-word-2015/
https://developer.wordpress.com/calypso/
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/KISS_principle
https://wpshout.com/survey-javascript-landscape-wordpress-developers/
https://www.lullabot.com/articles/choosing-the-right-javascript-framework-for-the-job
https://twitter.com/jashkenas
http://backbonejs.org
http://backbonejs.org/#FAQ-tim-toady
http://backbonejs.org/#examples
http://backbonejs.org/#examples
http://backbonejs.org/#examples-wordpress
https://torquemag.io/2012/12/backbone-underscore-35/
http://backbonejs.org
https://twitter.com/wycats
http://jquery.com
http://jquery.com
http://rubyonrails.org
https://emberjs.com/ember-users/
https://emberjs.com/ember-users/
http://www.discourse.org
https://www.groupon.com
https://www.livingsocial.co.uk
https://angularjs.org
https://medium.com/@jeffwhelpley/screw-you-angular-62b3889fd678
https://www.airpair.com/angularjs/posts/angularjs-performance-large-applications
http://backbonejs.org
http://facebook.github.io/react-native/

19

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

React can
be used in
conjunction with
other solutions
(such as Flux
and Redux) to
create complex,
full-blown
applications at
truly enormous
scale.

Let’s move on to explore React in a little more depth.

INTRODUCING REACT FROM FACEBOOK

The first thing to clarify is that React is, strictly speaking, a library rather
than a framework. As the project homepage states loud and clear, it’s a
“JavaScript library for building user interfaces.” It also takes a different
approach to the other three solutions we mentioned above.

Rather than trying to solve for every part of putting together a complete
online application (as in, for example, Ember), React uses a component-
based approach to focus heavily on the UI part of the problem.

It enables you to define highly modular UI components that live in their own
discrete world and can be easily reused. To put it in slightly more formal
terms, you can think of React as the V in MVC.

If you’re looking for a solid general introduction to React, the project
documentation is nicely put together, with Pete Hunt’s Thinking in React
piece a particularly useful jumping-off point. The React Fundamentals
course from egghead.io is also an excellent resource, as is the Rapid React
course from LearnCode.

It can also be used to quickly build out native apps for both iOS and Android
in the form of React Native. We’re not trying to build a Doomsday Machine
here, however, so we’ll be keeping things as vanilla as possible.

Let’s start with seeing if we can get React running locally.

IS THIS THING ON? (REDUX)

Have a quick look at many of the React tutorials online and you’ll soon find
yourself confronted with a wall of opinion around background tooling,
involving things like browserify, Bower, and webpack. These options are
well explained in the React package management pages, but we’ll be
looking to sidestep that rat’s nest entirely by simply downloading the React
Starter Kit locally.

The Starter Kit gives you a set of local files
you can call directly via the browser. Using
DesktopServer, I’ve created a new local site
called www.thoreauapp.dev and simply copied
the contents of Starter Kit into it.

CHAPTER 3

https://facebook.github.io/react/
https://facebook.github.io/react/tutorial/tutorial.html
https://facebook.github.io/react/docs/hello-world.html
https://facebook.github.io/react/docs/hello-world.html
https://facebook.github.io/react/docs/thinking-in-react.html
https://egghead.io/courses/react-fundamentals
https://egghead.io
https://www.youtube.com/watch?v=MhkGQAoc7bc&list=PLoYCgNOIyGABj2GQSlDRjgvXtqfDxKm5b
https://www.youtube.com/channel/UCVTlvUkGslCV_h-nSAId8Sw
https://facebook.github.io/react-native/
https://www.youtube.com/watch?v=QMwB7SeetgU
http://browserify.org
https://bower.io
https://webpack.github.io
https://facebook.github.io/react/docs/installation.html
https://facebook.github.io/react/docs/hello-world.html
https://facebook.github.io/react/docs/hello-world.html
https://serverpress.com/get-desktopserver/

20

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

Firing up our ‘site‘ locally, we see just the default index.html page created by
DesktopServer. I’m now going to replace the contents of that file with the
Hello World script from the Starter Kit documentation.

A quick refresh of the page and we see the following inspiring results:

It’s not the most visually compelling page in the world, but it proves one
crucial thing: we have React running locally, and it’s capable of displaying
content. Now let’s see if we can get it talking to WordPress.

CHAPTER 3

https://facebook.github.io/react/docs/hello-world.html

21

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

PERFORMING A BASIC REACT/REST API TEST

If you’ve read the previous chapter, you’ll remember that we have a local
REST API-enabled WordPress install running at http://walden.dev/. If we call
http://walden.dev/wp-json/wp/v2/posts via HTTP, we’ll get a full list of all posts
in the install. I’m going to use that to do a very quick check that I can get
React talking to WordPress via the REST API.

The code below is based on the React documentation tips for loading
external data. Don’t worry about the ins and outs of it too much for now;
I just want to see if we can get our separate components talking to each
other by replacing my index.html file with the following code:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello React!</title>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.0.0/
jquery.min.js"></script>
 <script src="build/react.js"></script>
 <script src="build/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.34/browser.min.js"></script>
 </head>
 <body>
 <div id="example"></div>
 <script type="text/babel">
 var ThoreauQuote = React.createClass({
 getInitialState: function() {
 return {
 quoteContent: '',
 quoteID: ''
 };
 },

 componentDidMount: function() {
 this.serverRequest = $.get(this.props.source, function
(result) {
 var firstQuote = result[0];
 this.setState({
 quoteID: firstQuote.id,
 quoteTitle: firstQuote.title.rendered,
 quoteContent: firstQuote.content.rendered
 });
 }.bind(this));
 },
 componentWillUnmount: function() {
 this.serverRequest.abort();
 },
 render: function() {
 return (
 <div>
 Quote ID: {this.state.quoteID}

 Quote Title: {this.state.quoteTitle}

 Quote Content: {this.state.quoteContent}

 </div>

CHAPTER 3

https://facebook.github.io/react/docs/react-component.html
https://facebook.github.io/react/docs/react-component.html

22

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

);
 }
 });
ReactDOM.render(
 <ThoreauQuote source="http://walden.dev/wp-json/wp/v2/posts" />,
document.getElementById('example')
);
 </script>
 </body>
</html>

Another quick refresh of the browser, et voila!

It’s a deeply unimpressive visual result, but we’ve done something pretty
major here – we’ve used React to call data from the REST API, parse it, and
then display results on the screen. At this point, we can confidently say that
we’re in business!

CONCLUSION

JavaScript-powered front end solutions are set to be a huge part of the
WordPress world very soon, so now is an excellent time to start exploring
their potential. Having briefly outlined the other major contenders for
building our simple app, and decided on React – a solution that’s set to be
around for many years to come.

We’ve also made quite a bit of progress towards
our eventual goal. Previously, we knew that
WordPress was merrily serving up content via
the REST API. We also now know that we can get
React running locally to consume and display
that content.

CHAPTER 3

23

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

CHAPTER 4:
CREATING OUR
REACT-POWERED
WORDPRESS SITE

24

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

In the previous chapter, we started looking at the front end part of the
puzzle and selected React as the solution we’d be running with. The reasons
why are simple: it’s speedy, well-documented, and enjoys the support of one
of the largest players in the business, Facebook.

In order to check that we could get WordPress and React talking to each
other, we downloaded the React Starter Kit locally and cobbled together a
quick API call to display some arbitrary data from our local WordPress install.

WHAT WE’RE TRYING TO BUILD

We’ll be taking our inspiration here from Per Harold Borgen’s excellent
introductory React article. If you’re totally unfamiliar with React, it’s also well
worth checking out his React.js in 8 Minutes piece before going any further.

We’ll be looking to put together a super simple, single-page app with three
main moving parts: a random Thoreau quote (served up by WordPress),
a suitable picture to accompany it, and a button that enables you to load
another random quote.

Though our
test worked, we
didn’t exactly
go to town on
the details
of how it was
working. In
this chapter,
we’ll look at
a structured
overview
of putting
together a
simple React
application
and using
it to display
data. Let’s get
started.

CHAPTER 4

https://facebook.github.io/react/
https://medium.com/learning-new-stuff/building-your-first-react-js-app-d53b0c98dc#.sdzpor9qu
https://medium.com/learning-new-stuff/building-your-first-react-js-app-d53b0c98dc#.sdzpor9qu
https://medium.com/learning-new-stuff/learn-react-js-in-7-min-92a1ef023003#.ebbxo2o0p

25

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

Rather than thinking about this in terms of templates, we’ll be using the
concept of components in React to organize things. Looked at in those
terms, we can break the picture above into four useful sub-components:

1.	 ThoreauApp: The component that will house everything.

2.	 Picture: Where our image will live.

3.	 Quote: Where we’ll be displaying the best of Thoreau’s musings.

4.	 RandomButton: An opportunity for users to load fresh wisdom.

Now, let’s take it from the top and put together our first component.

CREATING OUR FIRST COMPONENT

Just a quick reminder here – we’re working in an index.html page in the root
directory of our local http://www.thoreauapp.dev/ site. The React Starter Kit is
in the same directory, and we’re including relevant files in our header. You’ll
also notice an imaginatively named empty <div> on the page which we’ll
load our content into:

<!-- DOCTYPE HTML -->
<html>
 <head>
 <meta charset="UTF-8" />
 <title>React Thoreau App</title>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.0.0/
jquery.min.js"></script>
 <script src="build/react.js"></script>
 <script src="build/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.34/browser.min.js"></script>
 </head>
 <body>
 <div id="content"></div>
 </body>
</html>

We call the createClass method on the React object to define our first
component. As you can see below, we’re also passing in a specification object:

var ThoreauApp = React.createClass({
 render: function(){
 return (<div><p>A foolish consistency is the hobgoblin of
little minds.</p></div>);
 }

});

The specification object is where we’ll define a number of things shortly, but
we’ll kick things off by creating a basic render method. This is what React will
use each time it redraws the contents of the component.

CHAPTER 4

https://facebook.github.io/react/docs/thinking-in-react.html#step-1-break-the-ui-into-a-component-hierarchy
https://facebook.github.io/react/docs/getting-started.html
https://facebook.github.io/react/docs/top-level-api.html#react.createclass

26

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

If you excitedly refresh your browser page at this point, you’ll be greeted
(sadly) with absolutely nothing. That’s because we’ve only defined a potential
component at this point, we haven’t brought it to life yet. Let’s take care of
that now by using ReactDOM.render:

ReactDOM.render(<ThoreauApp />, document.getElementById('content'));

We are telling ReactDOM.render two very important pieces of information:

1.	 The component it should render.

2.	 The area on the page it should render it within.

A quick refresh of the page, and we’re greeted with the following
inspiring sight:

Before we go any further, let’s briefly take stock of what’s going on.

WHAT JUST HAPPENED?

CHAPTER 4

https://facebook.github.io/react/docs/top-level-api.html#reactdom.render

27

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

It’s worth actually looking at the code in its entirety at this stage, just to be
crystal clear about what we’ve actually done:

1.	 We loaded the relevant React libraries.

2.	 We have a defined area on the page to load our React content into.

3.	 We worked inside <script> tags to write our JavaScript/JSX.

4.	 We defined a component and gave it a render function.

5.	 We instantiated our component.

Now that we know roughly what’s going on, let’s take a brief detour to fancy
things up visually.

SPRINKLING IN SOME STYLE

Our on-screen results so far are less than inspiring. It would be nice to
throw at least some color and typography into the mix at this stage. But
how? The simple answer here is by using inline styles.

CSS purists will be horrified at the mere thought of this, but that pales in
comparison with the despair others will feel when confronted with the
modern React CSS landscape.

There are, admittedly, all sorts of clever modular solutions (such as Radium)
out there, but we’re looking to keep things as simple as possible here.

CHAPTER 4

The tip of the React CSS iceberg.

https://facebook.github.io/react/docs/jsx-in-depth.html
https://facebook.github.io/react/tips/inline-styles.html
https://github.com/MicheleBertoli/css-in-js
http://stack.formidable.com/radium/
https://www.kirupa.com/react/styling_in_react.htm

28

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

With that in mind, we’re going to throw some quick styles into the render
function and get on with our lives:

var ThoreauApp = React.createClass({
 render: function(){
 var thoreauAppStyle = {
 backgroundColor: 'ffde00',
 color: '#333',
 padding: 20,
 width: 550,
 margin: '0 auto',
 fontFamily: 'Georgia',
 fontSize: 22,
 fontWeight: 'bold'
 }
 return (<div style={thoreauAppStyle}><p>A foolish consistency
is the hobgoblin of little minds.</p></div>);
 }
});

All of that leads to the following result:

We won’t be winning any design awards, but it’s enough to establish that we
have some control. With that brief detour out of the way, let’s break things
out into components a bit more thoroughly.

ADDING CHILD COMPONENTS

Now that we’ve got something on the page – and a vague idea of one way
to style elements – let’s get a bit more organized. We’ll start by creating our
next two components. As you can see, the placeholder text is moved into
Quote, and there’s a placeholder image in play now courtesy of lorempixel:

var Picture = React.createClass({
 render: function(){
 return (
 <div>

 </div>
);
 }
});

CHAPTER 4

http://lorempixel.com/

29

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

var Quote = React.createClass({
 render: function(){
 return (
 <p>A foolish consistency is the hobgoblin of little
minds.</p>
);
 }
});

Again, we need to actually call these – this time by updating what we return
from the ThoreauApp component:

return (
 <div style={thoreauAppStyle}>
 <Picture />
 <Quote />
 </div>
);

A quick refresh and we see the following:

A QUICK WORD ABOUT DATA IN REACT

Data generally in React can be handled as either ‘state‘ or ‘props‘. These can
be slippery concepts to grasp, so a close review of Thinking in React and
the relevant documentation is recommended. The best thing about React
is that changes to it will fire automatic updates to the relevant components
on-screen down the line.

CHAPTER 4

It’s looking
a lot better!
There are
a lot of
placeholders
knocking
around so
far, though.
Let’s bring in
some data.

https://facebook.github.io/react/docs/thinking-in-react.html#a-brief-interlude-props-vs-state
https://facebook.github.io/react/docs/interactivity-and-dynamic-uis.html#components-are-just-state-machines

30

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

Once state arrives in the form of interactions, the general idea is that you want
it to be handled once as high up the component chain as possible, and then
move data around as props thereafter. That’s broadly the approach we’ll take
when we hook up the REST API and introduce a button for users to play with.

TALKING TO THE WORDPRESS REST API

Let’s get down to business! The first thing we’ll do is make our app aware of
where it can get data from:

ReactDOM.render(<ThoreauApp dataURL="http://walden.dev/wp-json/wp/v2/
posts" />, document.getElementById('content'));:

Before we look at loading the data, we’ll make sure we’re starting with a
clean slate on each page load. getInitialState will be called once automatically
on load and can be used to clear the decks:

getInitialState: function() {
 return {data: [], selectedQuote: ''};
},

Then we’ll use componentDidMount to actually make the call to our WordPress
API. In this instance, we’re using jQuery to make the actual AJAX request. It’ll
store the results of the request inside the component using setState:

componentDidMount: function() {
 $.ajax({
 url: this.props.dataURL,
 dataType: 'json',
 cache: false,
 success: function(data) {
 this.setState({data: data});
 this.chooseRandomQuote();
 }.bind(this),
 error: function(xhr, status, err) {
 console.error(this.props.url, status, err.toString());
 }.bind(this)
 });
},

We’ll also call another function here to pick out a random quote from the
result set and assign it to a particular state:

chooseRandomQuote: function () {
 var randomNumber = Math.floor(Math.random() * this.state.data.
length);
 var selectedQuote = this.state.data[randomNumber];
 this.setState({selectedQuote: selectedQuote.content.rendered});
},

We now need to feed that information into our Quote component. We’ll do
that by passing it in as a prop called quote:

<Quote quote={this.state.selectedQuote} />

CHAPTER 4

https://facebook.github.io/react/docs/tutorial.html#reactive-state
https://facebook.github.io/react/docs/component-specs.html#lifecycle-methods
https://api.jquery.com/jquery.get/
https://facebook.github.io/react/docs/component-api.html#setstate

31

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

And then pick it up and display it inside the component:

<div>{this.props.quote}</div>

A quick refresh shows that we’re almost there:

Let’s finish things off.

DISPLAYING EXTERNAL HTML CONTENT AND ADDING
INTERACTION WITH A BASIC BUTTON

The eagle-eyed will have spotted that we have big dirty paragraph tags
sitting there staring at us. This is actually by design in React, to avoid cross-
site scripting risks. We can get around it quickly by using the excitingly
named dangerouslySetInnerHTML to get the job done:

<div dangerouslySetInnerHTML={{__html: this.props.quote }} />

Our final task in this chapter is to add a bit of basic interaction. We’ll do this
in the simplest way possible by adding in a quick button back in ThoreauApp
that can call our earlier state-changing chooseRandomQuote function:

return (
 <div style={thoreauAppStyle}>
 <Picture
 imageURL='http://lorempixel.com/550/350/'
 />
 <Quote quote={this.state.selectedQuote} />
 <button onClick={this.chooseRandomQuote}>Get more wisdom!</
button>
 </div>

CHAPTER 4

https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://facebook.github.io/react/tips/dangerously-set-inner-html.html

32

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

Thanks to the magic of React, our button will now cause a re-render of the
content (using the data it already has loaded) with a fresh quote each time
it’s pressed.

CONCLUSION

We’ve kept things as stripped down as possible in the example above, but
hopefully, it’s enough to walk you through the basics of React and offer
several potential jumping off points for further self-study.

We’ve come a long way since Chapter 1! To recap, what we have so far is a
one-page React app that:

1.	 Is split out into components.

2.	 Loads data from the WordPress REST API and displays a random result.

3.	 Enables users to display fresh content at the touch of a button, without
needing further page reloads.

CHAPTER 4

33

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

CHAPTER 5:
ADDING CUSTOM
ENDPOINTS AND
EXTRA TOUCHES

34

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

In Chapter 4, we stepped through building the basics of our app using
Facebook’s React and put together a simple solution where users could
serve up nuggets of timeless wisdom on demand.

In this chapter, we’ll concentrate on two main areas: adding a custom
endpoint back in our WordPress site to make life a little easier when we’re
delivering large amounts of quotations, and adding some small extra
touches on the front end in React.

As a quick reminder of the overall setup, so far we are running a local
WordPress install at http://walden.dev/ and serving up content via the REST
API. We’re reading that content in a local React app running at http://www.
thoreauapp.dev/. Okay – let’s get down to business!

INTRODUCING CUSTOM ENDPOINTS IN THE REST API

So far we’ve kept things vanilla and simply used the REST API to return
a list of posts that we’ve then parsed and displayed. We’ve also got the
option, however, of extending the API and adding our own totally bespoke
custom endpoints.

As the documentation clearly outlines, this involves doing two things:

1.	 Creating a function in WordPress to handle our custom endpoint.

2.	 Registering a route to make that available via the REST API.

Let’s check and see if the “bare basics” option outlined in the documentation
actually works in our local setup. We’ll pop into the functions.php file in our
theme on http://walden.dev/ and add the code below:

//Test adding basic REST API custom endpoint.
/**
 * Grab latest post title by an author!
 *
 * @param array $data Options for the function.
 * @return string|null Post title for the latest,  * or null if none.
 */
function my_awesome_func($data) {
	 $posts = get_posts(array(
		 'author' => $data['id'],
));

	 if (empty($posts)) {
		 return null;
	 }

	 return $posts[0]->post_title;
}

CHAPTER 5

https://facebook.github.io/react/
https://developer.wordpress.org/rest-api/
https://developer.wordpress.org/rest-api/
http://www.thoreauapp.dev/
http://www.thoreauapp.dev/
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/
https://premium.wpmudev.org/blog/functions-file/

35

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

add_action('rest_api_init', function () {
	 register_rest_route('walden/v1', '/author/(?P<id>\d+)', array(
		 'methods' => 'GET',
		 'callback' => 'my_awesome_func',
));
});

The only thing we’ve changed here from the sample code is using "walden"
as the namespace. This code should use the rest_api_init hook to call my_
awesome_func. If we feed it a valid author ID, we should expect to get the
title of the first post by that author back.

In our case, we have just one author in the local WordPress setup, and
his author ID is 1. Let’s see what happens when we try calling the custom
endpoint using the URL http://walden.dev/wp-json/walden/v1/author/1:

As with many of the examples so far, the on-screen results aren’t
breathtaking, but it establishes a key point – we can create custom
endpoints and call them successfully. With a quick trip to our back end we
can confirm that “What you see” is indeed the title of the first post, so we’re
getting the expected result.

It’s worth noting here that there are several additional layers of complexity
you’d add on in a real-world environment. The custom endpoints
documentation does a great job of building out the basic example we’ve
used here, so we’ll simply point you in that direction for more details.

CHAPTER 5

https://developer.wordpress.org/reference/hooks/rest_api_init/
https://developer.wordpress.org/rest-api/extending-the-rest-api/adding-custom-endpoints/

36

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

Now, let’s move on to creating a useful custom endpoint for our existing app.

ADDING OUR OWN CUSTOM ENDPOINT

We’ll be taking a cue from the excellent Delicious Brains React Native REST
API tutorial, and streamline our data loading using a custom endpoint. As
you may remember from the last chapter, we’re currently loading in all of
our data, and then displaying random individual quotes using React.

That’s not a big problem considering we’ve only got a few quotes to deal
with, but what if we had thousands? Things could get dicey quickly. What
we’ll do instead is use custom endpoints to get a list of all our post IDs, pick
a randomized one from that list, and load in that data on its own each time.

Let’s start by setting up the custom endpoint. The code below is based on a
mix of the REST API documentation example and the Delicious Brains tutorial.
Again, it’s at the bottom of functions.php in our active theme’s directory:

// Return all post IDs
function walden_get_all_post_ids() {
	
	 $all_post_ids = get_posts(array(
 'numberposts' => -1,
 'post_type' => 'post',
 'fields' => 'ids',
));

 return $all_post_ids;
}

// Add Walden/v1/get-all-post-ids route
add_action('rest_api_init', function () {
	 register_rest_route('walden/v1', '/get-all-post-ids/', array(
		 'methods' => 'GET',
		 'callback' => 'walden_get_all_post_ids',
));
});

When we call http://walden.dev/wp-json/walden/v1/get-all-post-ids, we’re now
greeted with a nice clean array of all our post IDs:

Let’s now make some quick changes in our React code to use that data
instead of what we were previously doing. We’ll start by passing in the new
custom endpoint along with our previous REST API post’s URL:

CHAPTER 5

https://deliciousbrains.com/wp-rest-api-customizing-endpoints-adding-new-ones/
https://deliciousbrains.com/wp-rest-api-customizing-endpoints-adding-new-ones/

37

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

ReactDOM.render(<ThoreauApp dataURL="http://walden.dev/wp-json/wp/
v2/posts/" idURL="http://walden.dev/wp-json/walden/v1/get-all-post-
ids"/>, document.getElementById('content'));

We’ll then move our existing code around to call for a list of IDs first, and
then select a random one from that list to actually load an individual quote
directly from the REST API:

getAllIDs: function(){
 console.log('getAllIDs called');
 $.ajax({
 url: this.props.idURL,
 dataType: 'json',
 cache: false,
 success: function(data) {
 this.setState({data: data});
 this.chooseRandomQuote();
 }.bind(this),

 error: function(xhr, status, err) {
 console.error(this.props.url, status, err.toString());
 }.bind(this)
 });
},

chooseRandomQuote: function () {
 var randomNumber = Math.floor(Math.random() * this.state.data
length);
 var selectedQuote = this.state.data[randomNumber];
 this.setState({selectedQuoteID: selectedQuote});
 this.getQuote();
},

getQuote: function(){
 $.ajax({
 url: this.props.dataURL + this.state.selectedQuoteID,
 dataType: 'json',
 cache: false,
 success: function(data) {
 this.setState({selectedQuoteContent: data.content.
rendered});
 }.bind(this),
 error: function(xhr, status, err) {
 console.error(this.props.url, status, err.toString());
 }.bind(this)
 });
},

componentDidMount: function() {
 this.getAllIDs();
},

We’ll also make a slight change to what’s passed into our Quote component
to pick up on the changes above:

<Quote quote={this.state.selectedQuoteContent} />

CHAPTER 5

38

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

A quick refresh to the main app and all appears to be well. We still have
quotes being served from the REST API and the ability to load new ones,
however, they’re now using custom endpoints to get the job done.

It’s worth pointing out at this stage that we’ve very much taken the happy
path so far. Experienced React or WordPress developers may well have
a slew of objections to everything from the coding style on display to the
general lack of error handling, loading messages, and so on.

We’re going to leave the majority of those potential improvements as
exercises for the reader to tackle, but there is one minor item to address
while we’re at this stage.

TIDYING OUR HTML OUTPUT FROM WORDPRESS

At this stage, we’re still using that slightly ominous sounding
dangerouslySetInnerHTML method down in our Quote component. It would
be ideal if we could take care of that bit of business back in WordPress
rather than handling it somewhat awkwardly in React.

CHAPTER 5

https://en.wikipedia.org/wiki/Happy_path
https://en.wikipedia.org/wiki/Happy_path
https://facebook.github.io/react/tips/dangerously-set-inner-html.html
http://torquemag.io/2016/01/guide-to-escaping-outputs-in-wordpress/

39

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

var Quote = React.createClass({
 render: function(){
 return (
 <div dangerouslySetInnerHTML={{__html: this.props.quote
}} />
);
 }
});

Fortunately, this is relatively easy to accomplish by adding an extra field
on existing endpoints using register_rest_field as described in the REST API
documentation. Again leaning on the Delicious Brains tutorial we mentioned
earlier, we’ve rejigged our existing code in functions.php below to add an
extra field in post responses containing a nice, friendly, plaintext version of
our quotes:

// Return plaintext content for posts
function walden_return_plaintext_content($object, $field_name,
$request) {
 return strip_tags(html_entity_decode($object['content']
['rendered']));
}

add_action('rest_api_init', 'setup_rest_route');
add_action('rest_api_init', 'add_plaintext_response');

// Add Walden/v1/get-all-post-ids route
function setup_rest_route(){
	 register_rest_route('walden/v1', '/get-all-post-ids/', array(
		 'methods' => 'GET',
		 'callback' => 'walden_get_all_post_ids',
));
}

function add_plaintext_response() {
 // Add the plaintext content to GET requests for individual posts
 register_rest_field(
 'post',
 'plaintext',
 array(
 'get_callback' => 'walden_return_plaintext_content',
)
}

Just to be on the safe side, let’s make sure our custom endpoint is still
working at http://walden.dev/wp-json/walden/v1/get-all-post-ids:

CHAPTER 5

https://developer.wordpress.org/rest-api/extending-the-rest-api/modifying-responses/
https://developer.wordpress.org/rest-api/extending-the-rest-api/modifying-responses/
https://deliciousbrains.com/wp-rest-api-customizing-endpoints-adding-new-ones/

40

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

Now let’s see what happens if we call one post in particular with http://
walden.dev/wp-json/wp/v2/posts/4:

Happy days! We’ve now got clean text in our response. Let’s use it directly in
our getQuote function...

getQuote: function(){
 	$.ajax({
 url: this.props.dataURL + this.state.selectedQuoteID,
 dataType: 'json',
 cache: false,
 success: function(data) {
 this.setState({selectedQuoteContent: data.plaintext});
 }.bind(this),
 error: function(xhr, status, err) {
 console.error(this.props.url, status, err.toString());
 }.bind(this)
 });
},

...and get rid of that worrying dangerouslySet InnerHTML method we were using:

var Quote = React.createClass({
 render: function(){
 return (
 <div><p>{this.props.quote}</p></div>
);
 }
});

CHAPTER 5

41

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

A final check of our front end and all appears to be well.

The “Get more wisdom!’ button still looks visually unappealing, though. Let’s
throw in a final bit of styling there.

ADDING SOME SLIGHT BUTTON STYLING

We’ll keep this last part nice and simple. First of all, we’ll add a new style object...

var buttonStyle = {
 height: 50,
 width: '100%',
 fontFamily: 'Arial',
 border: '1px solid #CF1111',
 borderRadius: 5,
 fontSize: 20,
 fontWeight: 'bold',
 textAlign: 'center',
 color: '#fff',
 backgroundColor: '#E82020'
}

...and then pass it into our button:

<button style={buttonStyle} onClick={this.chooseRandomQuote}>Get more
wisdom!</button>

CHAPTER 5

42

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

One final refresh on the front end, and we’re done and dusted!

CONCLUSION

We haven’t made enormous strides on the front end this time, but we’ve
introduced a number of key concepts, and made life slightly easier for
ourselves behind the scenes as a result.

The code samples shown here are very much just jumping-off points for
further exploration, rather than the type of thing you’d sling into a real
client-facing project.

There are two key takeaways to focus on this time if you’re looking to
explore further yourself:

1.	 Custom API endpoints can easily be added to your applications.

2.	 You’re also free to add extra fields to standard endpoints if required.

CHAPTER 5

43

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

CHAPTER 6:
EXPLORING THE
WEB WITH THIRD-
PARTY APIS

44

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

We’ve come a long way. From pretty much a standing start, we’ve managed
to introduce the basic concepts of the technology, and get a small
interactive app up and running (with a little help from React).

Along the way, we’ve proven that even non-technical WordPress users can
start getting their feet wet with the programmatic power behind the next
generation of the platform. The future of WordPress is not going to be
about tiny Thoreau quote apps, however. It’s going to largely center around
how the REST API helps WordPress smoothly integrate with the rest of the
online world.

To close out our ebook, let’s take a peek at what that type of integration
might look like.

THE WIDER PROGRAMMATIC WORLD AWAITING WORDPRESS

If you’ve used WordPress for any length of time at all, you’ve almost
certainly taken advantage of existing third-party integrations in the form of
plugins. You might have added MailChimp into the mix, experimented with
Google Analytics options, or taken advantage of any number of the other
popular third-party app plugins that are out there.

Though the sophistication of many of these solutions to date has been
impressive, they’ve always been held back by a fundamental problem on the
WordPress side of the equation. From a technical perspective, the lack of a
stable and reliable native API in WordPress has historically put developers
on shaky ground in terms of stability, testing, and adding new features.

The REST API effectively removes those obstacles and places WordPress on
an equal footing with other applications that have a stable, well-defined API.
Remember, we’ve barely settled into the starting blocks at this stage – the
real race is very much still to be run.

CHAPTER 6

https://facebook.github.io/react/
https://wordpress.org/plugins/mailchimp-for-wp/
https://wordpress.org/plugins/google-analytics-for-wordpress/

45

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

We can expect the REST API to power a new generation of powerful third-
party integrations which enable non-technical users to create their own
tailored solutions in a modular, drag-and-drop manner.

There’s an excellent chance that we’ll see something of a Cambrian
explosion in terms of third-party integrations over the next two to five years.
Put simply, if it can be integrated, it more than likely will be.

CONCLUSION

It’s time to finally wrap up our ebook! We’ve covered a lot of resources along
the way, but we’d like to point you towards a few, in particular, to close
things out and help you keep pace with REST API development in general:

1.	 WP REST API documentation: The REST API is still a work in progress, and
the official docs do a great job of getting people ramped up quickly.

2.	 REST API-related presentations: There’s an increasingly excellent series of
deep-dive talks on WordPress.tv that reward close viewing.

3.	 Our own REST API reporting: A regular review of the latest REST API-tagged
content here on the site will keep you more than up to speed!

We hope you’ve learned as much throughout the ebook as we did putting
it together!

CHAPTER 6

https://en.wikipedia.org/wiki/Cambrian_explosion
https://en.wikipedia.org/wiki/Cambrian_explosion
https://developer.wordpress.org/rest-api/
http://wordpress.tv/?s=rest+api
http://torquemag.io/tag/rest-api/
http://torquemag.io/tag/rest-api/

46

Developing an App Using the REST API and WordPress

TORQUE | WP ENGINE

ABOUT THE AUTHOR:
TOM EWER
Tom Ewer is the founder of Leaving Work Behind and
WordCandy. He has been obsessed with WordPress
since he first laid eyes on it, and has been writing
educational and informative content for WordPress
users since 2011. When he’s not running his businesses,
you’re likely to find him outdoors somewhere – as far away
from a screen as possible!

twitter.com/tomewer
http://wordcandy.co/

CODE UPDATED BY:
RYAN HOOVER
Ryan Hoover is a WordPress Developer for WP Engine
and the lead organizer of WordCamp Austin 2017. He's
been using WordPress for about 10 years. But that's
only when he's not covered in sawdust or touring
wineries with his wife and son.

http://twitter.com/tomewer
http://wordcandy.co/

About Torque
Torque is a news site featuring all things WordPress. We are dedicated to
informing new and advanced WordPress professionals, users, and
enthusiasts about the industry. Torque focuses primarily on WordPress
News, Business, and Development, but also covers topics relating to open
source and breakthrough technology. Torque made its debut in July 2013,
at WordCamp San Francisco, and has since produced valuable content that
reflects the evolution of WordPress, both as a platform and a community.
Torque is a WP Engine publication, though maintains complete editorial
independence. torquemag.io

About WP Engine
WP Engine powers amazing digital experiences for websites and
applications built on WordPress. The company’s premium managed hosting
platform provides the performance, reliability and security required by the
biggest brands in the world, while remaining affordable and intuitive
enough for smaller businesses and individuals. Companies of all sizes rely
on WP Engine’s award-winning customer service team to quickly solve
technical problems and create a world-class customer experience. Founded
in 2010, WP Engine is headquartered in Austin, Texas and has offices
in San Francisco, California, San Antonio, Texas, Limerick, Ireland and
London, England.

WP-EBK-LT-DevAppRESTAPIWP-v06

wpengine.comtorquemag.io

https://wpengine.com/

