
1

WHITE PAPER The ultimate guide to Agile development on WP Engine.

The ultimate guide 
to Agile development 
on WP Engine.
 By Janna Hilferty

WHITE PAPER



Table of Contents.
Introduction................................................................................................................4

Principles of Agile development..............................................................................4
RAPID RELEASE FOR THE BEST END PRODUCT....................................................................................................................4

WORKING ITERATIONS........................................................................................................................................................5

CROSS-TEAM COLLABORATION.........................................................................................................................................5

LEARN FROM RETROSPECTIVES.........................................................................................................................................5

Why use Agile?............................................................................................................5
FASTER TIME TO MARKET....................................................................................................................................................5

QUALITY INCREASE..............................................................................................................................................................6

REDUCE WASTED TIME........................................................................................................................................................6

IMPROVED MORALE............................................................................................................................................................6

DELIGHT END-USERS...........................................................................................................................................................6

Scrum..........................................................................................................................6
SCRUM ARTIFACTS...............................................................................................................................................................6

SCRUM ROLES......................................................................................................................................................................6

Agile team workflows................................................................................................7

The Agile toolbelt.......................................................................................................7
TASK MANAGEMENT...........................................................................................................................................................7
Jira.................................................................................................................................................................................................................................................... 8

Trello............................................................................................................................................................................................................................................... 8

Asana.............................................................................................................................................................................................................................................. 8

ENVIRONMENT MANAGEMENT..........................................................................................................................................8

VERSION CONTROL..............................................................................................................................................................9

LOCAL DEV............................................................................................................................................................................9
Vagrant........................................................................................................................................................................................................................................... 9

Virtual Box..................................................................................................................................................................................................................................... 9

VVV.................................................................................................................................................................................................................................................. 9



CI/CD......................................................................................................................................................................................9
DeployBot....................................................................................................................................................................................................................................... 9

CodeShip......................................................................................................................................................................................................................................10

Jenkins...........................................................................................................................................................................................................................................10

BUILD TOOLS..................................................................................................................................................................... 10

CODE TESTING.................................................................................................................................................................. 10
Unit testing...................................................................................................................................................................................................................................10

Integration testing.......................................................................................................................................................................................................................10

Acceptance testing.....................................................................................................................................................................................................................11

Test-driven development with Codeception..........................................................................................................................................................................................11

MONITORING.................................................................................................................................................................... 11
Server monitoring...........................................................................................................................................................................................................................................11

Uptime monitoring.........................................................................................................................................................................................................................................11

Application-level performance monitoring.............................................................................................................................................................................................12

File integrity monitoring................................................................................................................................................................................................................................12

COPY TO/FROM ENVIRONMENTS................................................................................................................................... 12

MIGRATION........................................................................................................................................................................ 12

Review.......................................................................................................................12

About the author.....................................................................................................13

About WP Engine......................................................................................................14



4

WHITE PAPER The ultimate guide to Agile development on WP Engine.

Introduction.
Agile is a term used for a set of principles surrounding iterative, 
incremental software development methods. It is quickly 
becoming the most popular way for teams of developers to 
coordinate and rapidly deliver quality software products. Agile 
methods allow teams to communicate openly, continually 
commit changes, and deliver tested and approved code. Open 
lines of communication increases cross-team coordination, 
and allows for proper expectation management with your 
stakeholders. Perhaps most importantly, it helps avoid technical 
debt and bootstrapped solutions that barely work. In this guide 
we’ll explore the methodology behind Agile development, Agile 
workflows, and how WP Engine fits into the equation.

Principles of Agile 
development.

Rapid release for the best end product
The first principle of Agile development states that committing 
early and often will offer greater customer satisfaction. Agile 
methods encourage developers to ship code changes “often”--
and this can mean several times a day, or several times a week. 

Second, the Agile Manifesto states that the end user deserves 
the best product, and the best, most competitive products 
often have dynamic requirements. This means developers 
should view changing product requirements as an opportunity 
to delight their user base.

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/


5

WHITE PAPER The ultimate guide to Agile development on WP Engine.

Working iterations
The Agile Manifesto goes on to say that iterations of 
development should all be working models. Some compare 
this to a “walk, bike, drive” product lifecycle. Each stage may 
look completely different from the last. But, each will meet the 
original purpose and needs of the end user, and each iteration 
does so more efficiently than the last. This also means your 
team of developers must not only commit often, they must 
deliver working products often as well. A working product is the 
true measure of success, and as such, your Sprints should be 
centered around this goal.

Cross-team collaboration
“Business people and developers must work together daily 
throughout the project.” This is where the cross-team coordination 
comes into play. Daily standup reports help keep leadership and 
stakeholders aligned and accountable to each other. 

Agile methods also promote driven but sustainable work, 
which means the work done in any given sprint should be a 
manageable workload that the team could manage any week 
of the year. And teams should be centered around driven 
individuals, built with the support and resources needed to get 
the job done. 

Learn from retrospectives
Last, Agile developers meet to reflect on what went right and 
wrong along the way in Retrospectives. It is important to hash 
out failures, to ensure the team doesn’t repeat mistakes of the 
past. It also gives the team a chance to examine what went well, 
so these successes can be integrated into future workflows.

Why use Agile?
The principles alone may be enough to convince some to 
convert to an Agile workflow, but for those who are not quite as 
easily convinced, let’s review the most important reasons why 
teams choose Agile.

Faster time to market
The biggest and most obvious win Agile provides is a faster 
development strategy. With rapid releases and goal posts for 

minimum viable products (i.e. working products), your time to 
market is reduced from years down to weeks or months. That 
means Agile methods can often have a material impact on your 
business as a whole.



6

WHITE PAPER The ultimate guide to Agile development on WP Engine.

Quality increase
With automated tests, code reviews, and increased 
communication, your quality of product is certain to increase 
when using Agile methods. Agile allows your team to hold all 
code to a set of quality standards before being committed 
to the repository, and that equates to fewer mistakes, and 
fewer bootstrapped solutions that break at every turn. It also 
means eliminating most (if not all) technical debt. Making up 
for development mistakes of the past can be one of the most 
costly tasks to take on. When your team uses test-driven Agile 
development methods from the start, products are developed 
right, the first time.

Reduce wasted time
One exercise many proponents of Agile encourage for anyone 
curious about its benefits is to simply sit down, and talk through 
what you do, auditing your calendars in the process. Many times 
just talking through redundant tasks your team takes on daily is 
enough to bring to light where time is being wasted. With Agile, 
your team can set clear priorities, and easily identify the time which 
could be saved with minor changes. Not only this, with Agile users 
also spend less time developing features or changes that never 
see the light of day. That means more time to develop prioritized, 
quality features that make a difference for your end-user.

Improved morale
By evening the workload into manageable weekly tasks, and 
increasing cross-team communication, morale of overworked 
developers will increase greatly. Gone are the days of spending 
weeks developing a feature that ends up being scrapped 
the next week in a review phase. Developers are given the 
community and support they need to succeed, and are able to 
manage their workload day to day with ease while still releasing 
viable, working products regularly. 

Delight end-users
A rapid release schedule for quality products is in the best 
interest of your end user. As the principles state, Agile methods 
believe your customer deserves the very best product. The 
flexibility of Agile development means teams can adapt to a 
market demand or need at a moment’s notice. And the speed 
and agility coupled with high quality products will delight users 
and increase adoption rates.

Scrum.
Scrum is one of the most common subsets of Agile development 
used by those creating software products or websites. We will 
look specifically at Scrum as an example of Agile implementation 
in practical use. Scrum projects are made up of Roles (Scrum 
Master, Stakeholders, Team, Product Owner, and Users), Artifacts 
(Backlogs of requests), and Time Boxes (time allotted to a sprint), 
which we’ll explore further.

Scrum artifacts
The first part to understand about Scrum is how pieces of work 
are separated and organized. Tasks are categorized into either 
a Product Backlog, or Sprint Backlog. The Sprint Backlog is for 
Stories, or groups of tasks which the team reasonably believes 
can be handled in the upcoming Sprint (generally 1-2 weeks). 

A “Story” basically says what the team is building, and why. Some 
teams prefer to construct each Story by saying, “As a ____ user, I 
need to do ______, because _______.” Each Sprint, multiple Stories 
can be handled by the team. If a particular Story is too large to 
be handled in a single Sprint, it is called an Epic instead, to better 
represent the body of work to be completed.  

The Product Backlog is for user or stakeholder requests or 
Stories which are prioritized, but not to be handled in the 
upcoming Sprint. It handles expectations for what should come 
next in the development process, and as such, it may be an 
ongoing log that is never completely emptied. The Sprint Backlog 
is divided up among teams to complete in the upcoming Sprint. 
And as tasks within the Backlog are completed, they must 
undergo user acceptance and build tests to ensure quality. 
Only once these tasks have been completed, tested, and fully 
deployed can a task be marked as Done.

Scrum roles
Within a Scrum team, there are several roles which members 
must fulfill. Agile and Scrum both encourage self-forming teams, 
which means your team may be in a constant state of flux. 
Within each team there should be a ScrumMaster, who holds 
daily 15-minute standup Scrum meetings. The ScrumMaster is 
in charge of organization and communication between the team 
and Stakeholders. They also are tasked with removing obstacles 
and increasing productivity and creativity among their team 
members. Furthermore, they help the Product Owner to better 

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Scrum_(software_development)#History


7

WHITE PAPER The ultimate guide to Agile development on WP Engine.

understand how to get the best return on investment from their 
team by using Agile methodology. 

The Product Owner is essentially the one person who owns the 
“list of requirements” for the product. They also are in charge 
of prioritizing and setting the order in which new features are 
released, as well as the schedule for release to customers. This 
is known as the “User Story,” or list of user-facing requirements 
and timeline for release. 

Last, the Development Team is the self-formed group of developers 
who do the nitty gritty work of accomplishing the tasks and tests 
involved in each Sprint. The team divides up the work to be done 
amongst themselves, based on the amount of work (measured in 
Story Points) needed to accomplish those tasks.

Agile team workflows.

There are several Agile workflows and systems development 
teams may use, but all these methods come down to one 
overarching workflow when it comes to developing for websites:

1.	There is a single repository or “source of truth” which you can 
think of as a library of code.

2.	Developers “check out” specific pieces of code (books) 
to edit, then commit their code back into the repository 
when complete.

3.	When code is committed to the repository, automated tests 
are run to ensure the code adheres to user acceptance and 
usability standards. 

4.	Often, this also triggers a code deploy to update the 
staging or production website with the changes. If this isn’t 

triggered automatically with each commit, there may be pre-
determined intervals for deploys to be triggered (weekly or 
bi-weekly, most often).

This type of development pipeline is often referred to as 
“Continuous Integration,” in which developers continue to commit 
changes often and regularly back to the repository. This subjects 
their code to regular testing and acceptance to ensure they are 
on the right path. And if the pipeline also includes automated 
deployments, it might also be referred to as “Continuous Delivery/
Deployment,” where not only are changes committed and tested 
regularly, they are also built and deployed at a regular pace. 
Continuous workflows are imperative to the Agile development 
process, because they meet the stringent requirements of 
committing code often and delivering working iterations of 
products regularly.

Beyond the coding aspect of Agile methods, developers should 
also adhere to the Agile project management standards. That 
means in-person “standup” reports daily, cross-team meetings 
weekly, weekly stakeholder updates, and retrospectives after 
a project concludes. The project management aspect also 
includes team organization, which often happens in KanBan 
or Scrum boards. Tasks are given “story points” which estimate 
the amount of time and work each task will take to complete. 
And these points are used in determining what tasks are 
reasonable to expect for completion in measured weekly or 
bi-weekly sprints. Remember, Agile development is focused on 
sustainability. That means the work you take on this week should 
be a manageable level that you could take on for any week of 
the year.

The Agile toolbelt.
All of the organization and development behind Agile methodology 
requires an advanced set of tools. In this section we’ll explore the 
types of tools your team will need to get started.

Task management
The first tool an Agile team needs to succeed is a task 
management system. How do you track the tasks that need to 
be completed, measure their time investment, and organize 
them into teams and Sprints? There are many tools on the 
market to help your team accomplish the management of these 
tasks, but we have singled out the best and most-used tools for 
you below.



8

WHITE PAPER The ultimate guide to Agile development on WP Engine.

JIRA
Jira by Atlassian is one of the primary tools we use in R&D at WP 
Engine, and it serves these functions well. Atlassian brands Jira 
as the “#1 software management tool used by agile teams.” If 
your team is relatively small (10 employees or under), the cost is 
certainly an advantage at only $100 per year. You get a rich set 
of features for development, including project status, Kanban 
boards, Story points, and integration with Github, Zendesk, Slack, 
and many more other tools that increase team productivity. 
While the feature set is rich for Jira, it may be too intense for 
non-development teams as it does come with a learning curve.

TRELLO
Trello, by contrast, is all about simplicity. Trello’s plans are 
separated by feature-set and by user, allowing for more powerful 
tiers of tools for Enterprise accounts while maintaining a more 
simple set of tools for smaller teams just getting started with Agile. 
What users tend to love the most about Trello is the ease of use 
- you start with a blank board and build out from there, allowing 
users to be as complex or streamlined as they need to be. 

Compared to other options on the market, Trello has a relatively 
low buy-in rate for teams to experiment at the level they choose. 
And its intuitive, drag-and-drop workflow is user-friendly for 
individuals and teams alike. Trello is best used by smaller teams 
who don’t have a lot of subtasks within their projects. 

ASANA
Last, Asana offers its complete feature set free for teams of 15 
developers or fewer. Beyond that, its pricing model is similar 
to Trello, with unlimited users at a set price-per-user. Asana 
tends to be best for middle-sized teams who work on small 
numbers of total projects, which are made up of at least ten 
tasks. It allows users to assign tasks to themselves or others, 
set scheduled dates for completion, and manage projects on a 
dashboard. However, it doesn’t allow users to segment projects 
further, which means dashboards can easily become overrun 
with too many concurrent projects.

Environment management
Within your development workflow as a team, there’s several 
project stages and environments needed to ensure the success 
of your Continuous Integration, and automated deployments. 
Before we dive into the tools, first let’s cover some basics of 
development best practice.

Broadly speaking, an experienced team of developers will never 
test changes in a production environment--that would risk 
a negative experience and potential downtime for your end 
users. That means at a minimum, there should be a sandboxed 
development environment to test code, and a staging 
environment to ensure your code behaves the way it should 
before copying the changes to production. 

At WP Engine we make the management of these stages easy. 
Each Site is broken out into three Environments: Development, 
Staging, and Production. While your live website lives in 
the “Production” environment, you can have your working 
“Development” version as well. From the Development 
environment users can “check out” code, and merge their 
changes back in using our git system. And the “Copy To/From” 
tool will help you easily publish those changes to Staging, and 
then Production when the changes have been approved. 

On top of these environments, your team can add automated 
Continuous Integration and deployment tools to add further 
building and testing tools to fully flush out your Agile utility belt.



9

WHITE PAPER The ultimate guide to Agile development on WP Engine.

Version control
We have already covered the need for a “single source of truth” 
when it comes to your team’s codebase. When developing with 
a team, version control over this codebase is paramount to your 
team’s success. Version control simply allows teams to have 
visibility into who committed changes, on what date, and view 
notes surrounding the changes for additional context. FTP/SFTP 
by contrast is like the wild west - anyone can make changes on 
the fly without others knowing, and without the context letting 
your team know why things changed. 

Git is widely understood to be the best way to version control 
your website’s files. WP Engine offers git built into the platform 
already, which is a great way to start. However, most teams will 
also want to collaborate on an external resource like Github, 
Gitlab, or Bitbucket. This allows teams to integrate into the CI/CD 
tools they need to automate their builds, tests, and deployments 
in combination with WP Engine. 

We have published guides on integrating Github, Gitlab, and 
Bitbucket with a CI/CD system with WP Engine. The majority 
of our users prefer to use DeployBot for full website version 
control, and CodeShip for more branched solutions (individual 
plugin or theme management).

Local dev

When using version control as a team, each developer “checks 
out” pieces of code to edit, then commit back to the common 
repository. Where does the code go when it’s checked out? To 
each developer’s local development environment. Developers 
should copy the codebase down to their local development 
instance, make the changes needed, then commit the changes 
back to the repository using git. For the most simplistic solution, 
you can use MAMP, or Desktop Server. Both of these solutions 
present a low barrier of entry, and if you’re just getting started 
with local development, this will help you get to the development 
part faster, rather than spending valuable time configuring your 
local environment. For more tailor-made solutions, read on.

VAGRANT
Vagrant is a local development tool that aims to mimic 
production environments as closely as possible. It works with 
any operating system on your local computer. Developers can 
initiate a vagrant using command line, and simply pull their 
website files down using git. 

VIRTUALBOX
On top of Vagrant, many developers also use VirtualBox. 
VirtualBox is a virtualization tool used to run different operating 
systems side-by-side. For example, some Mac users utilize the 
Parallels program to virtualize a Windows environment on their 
Mac machine. In a similar way, VirtualBox allows users to run 
a Linux/Ubuntu machine from their native operating system, 
to mimic the production environment where their website is 
actually hosted.

VVV
VVV, or Varying Vagrant Vagrants, is a software created by 10up 
to take your vagrant solution even further. VVV is installed on 
top of VirtualBox and Vagrant on your local machine, and offers 
a WordPress-specific vagrant system. It even offers local use 
of the powerful WP CLI toolset. Due to its WordPress-focused 
environment, it is an ideal solution for developers wanting to 
contribute a theme or a plugin to the WordPress.org repository.

CI/CD
Continuous Integration (CI) and Continuous Deployment (CD) are 
two workflows baked into Agile development. In order to create 
rapid, working iterations, it’s important to commit early, commit 
often, and deploy frequently. Your deployments will often be set 
at a cadence of one or two weeks, or whatever “Time Box” you 
have decided upon for your team’s Sprint cycles. Integration, or 
committing of code should happen daily for all developers. This 
means less wasteful code development--each piece is tested to 
ensure it meets quality standards, so errors are caught at the 
beginning. So what tools allow for a CI/CD pipeline? We will go 
over some of our favorites below.

DEPLOYBOT
 

https://wpengine.com/support/continuous-integration-deploybot-wp-engine/
https://wpengine.com/support/continuous-integration-codeship-wp-engine/
https://www.mamp.info/en/
https://serverpress.com/


10

WHITE PAPER The ultimate guide to Agile development on WP Engine.

DeployBot is one of the more simple CI/CD tools to use when it 
comes to website development. It simply polls your Github or 
Bitbucket repository for changes frequently, then pushes those 
changes to WP Engine (ideally your Development environment 
for your WP Engine Site) using SFTP. With DeployBot your 
developers each have a pipeline from local development, git 
push to their SCM (Github or Bitbucket), and DeployBot handles 
any builds and the deployment to WP Engine. DeployBot is ideal 
for users who manage their full site in a single branch, and not 
segmented further than that. Its simplicity is what draws many 
users to this CI/CD pipeline.

CODESHIP

CodeShip offers a more powerful toolset, allowing for all kinds 
of software development, testing, build, and deployment 
integrations. CodeShip supports Github, Bitbucket, and Gitlab as 
SCMs which they poll for changes regularly. What it does after 
detecting a change is up to you and the needs of your team. You 
can hook into Slack channels, hosting services, vagrants, and 
more. You can test, then run builds against any dependencies 
needed. And most importantly, you can then deploy via git to 
your Development environment on WP Engine using a custom 
script. Since you can deploy with a custom script, this also allows 
developers the freedom to manage and push multiple branches 
using environment labels. CodeShip is easy enough to setup that 
any level of developer will find success, but offers a more robust 
feature system that businesses of all levels will be able to tailor a 
solution to their own needs.

JENKINS
Jenkins is a commonly used CI/CD tool for almost all software 
development. Our own R&D team at WP Engine uses Jenkins 
to help automate regular deployments and test builds. Jenkins 
can hook into a wide range of tools including your chat systems 
and monitoring to help increase awareness, so it is highly 
extensible. Jenkins comes with a learning curve, though. While 
it is fairly easy to install, it is not so easy to configure your 
deployment pipeline, which happens with a custom script via 
SSH Gateway. Jenkins is a powerful tool that should be used 
by larger teams of experienced developers. While there is an 

abundance of online documentation, it can be difficult to digest 
if you’re just getting started.

Build tools
In the development process, there is a good chance you’ll 
encounter files which need to be built or compressed as a 
final step--most often, JavaScript files. A common example with 
JavaScript development is using Webpack to do your final build-
-this build compresses and bundles up  your JavaScript files, 
which means they aren’t easily editable once they are deployed 
to Development, Staging, or Production. It is best practice to 
Build your files using the CI/CD service you utilize. Keep in mind, 
if your Build has dependencies, these should be ignored using 
the .gitignore file so they are not pushed to production. Grunt 
and Gulp tend to be the “task runner” build tools most JavaScript 
developers use, while Webpack is more of a “bundler” tool. 
Which you choose really comes down to personal preference, 
experience level, and project needs (configuring structure, or 
strictly coding).

Code testing
Not only is it important to regularly commit and deploy working 
products, those products should also be held to a strict 
standard of Unit Testing, Acceptance Testing, and Usability 
Testing to ensure the best experience for your end user. 
Remember, Agile methodologies center around products 
that fulfill customer needs. Your customer deserves the best 
product. So what kind of automated tests should you run? We’ll 
dive in below.

UNIT TESTING
Unit tests are often written by the team that tackles a given 
project, before any development on the project has begun. 
These tests will look different for any team and any project, but 
generally these tests just serve to identify and help developers 
debug code at an early stage. It is highly encouraged to 
automate these tests when code is committed back to the 
common repository.

INTEGRATION TESTING
Integration testing is fairly straightforward: it simply ensures that 
the code you’ve written “plays nice” with the other pieces of the 
website. For example, if you’ve modified your theme’s functions.
php file, your integration testing would verify that your theme is 
still compatible with your site’s plugins and WordPress core as 

https://wpengine.com/support/continuous-integration-deploybot-wp-engine/
https://wpengine.com/support/continuous-integration-codeship-wp-engine/


11

WHITE PAPER The ultimate guide to Agile development on WP Engine.

a whole. Integration testing should also be performed regularly, 
prior to Sprint releases.

ACCEPTANCE TESTING
Acceptance testing is the last round of functional tests which 
should be required by your Agile team. Acceptance testing holds 
the end product against business and company standards, as 
well as the end-user requirements to ensure they are aligned. 
This step often requires internal and external user engagement 
with the product, which often is labeled as a “Beta” or “Release 
Candidate” when presented to users. This phase is only needed 
once the product as a whole is nearly ready for market. 

TEST-DRIVEN DEVELOPMENT WITH CODECEPTION
In an ideal world, your team should use the following workflow 
with testing: write a small unit test first, then write your code 
until your small unit test passes. The next time you add 
functionality, write another small unit test to add to the existing 
one before coding just enough for this test to pass. In this way, 
your coding and unit tests are scalable while ensuring your 
existing code does not break with new deploys. Codeception 
for WordPress is a tool that has pre-built integration, functional, 
and acceptance tests for WordPress that test against WordPress 
defined functions and classes. When using this tool, developers 
can more easily adhere to WordPress coding standards.

Monitoring
Once your website code has been deployed to your Production 
website, you can utilize monitoring on several vectors to ensure 
your product remains operational at all times. 

SERVER MONITORING
Monitoring the health of your server ecosystem is important, and 
you can use services like Zabbix and PagerDuty to monitor and 
alert your team if your system is overloaded or otherwise non-
operational. If you host your websites on WP Engine, we take care 
of server-level monitoring on your behalf, and work to resolve any 
issues often before your team is ever aware there of it. 

UPTIME MONITORING
WP Engine takes care of ensuring your web server’s uptime, 
but there are other vectors to be aware of as well. For example, 
if the code you just deployed causes a fatal error, uptime 
monitoring services will catch this almost instantly so your 
team can either fix or roll back the change. Pingdom and 
UptimeRobot are two uptime monitoring services you can use 
for this purpose.

https://codeception.com/for/wordpress
https://codeception.com/for/wordpress
https://www.zabbix.com/
https://www.pagerduty.com/
https://www.pingdom.com/product/uptime-monitoring
https://uptimerobot.com/


12

WHITE PAPER The ultimate guide to Agile development on WP Engine.

APPLICATION-LEVEL PERFORMANCE MONITORING
For WordPress, Application-Level Monitoring will give you 
insight into the speed of your “PHP Application,” or WordPress 
website. It will separate performance into PHP, Database 
queries, and external calls, and help you drill down into specific 
code performance issues. At WP Engine, we partner with New 
Relic for the best insights into performance. You can purchase 
Application Performance through WP Engine to get these 
insights from New Relic to troubleshoot and improve your 
website performance. 

FILE INTEGRITY MONITORING
Last, it’s important to be aware of file changes on your 
website for security purposes. When working on a team of 
Agile developers, everyone should be aware of who is making 
changes, and when. While git gives you the ability to add 
comments and a running log of changes, file changes via SFTP 
do not. However, WordPress plugins like Stream and Sucuri 
Security will help give your team this extra visibility.

Copy to/from environments
Another challenge development teams face is how to copy 
between Development, Staging, and Production environments. 
On WP Engine, this is easy with our Copy To/From tool within each 
Site, which utilizes our automated backup system. On other hosts, 
you might have to utilize other migration tools or a 3rd party 
deployment system to deploy changes between environments.

Migration
If you or your team have ever had to handle a website 
migration, you know it can get complicated quickly. Moving 
all your files, database, and changing DNS can be a struggle 
for even the most advanced developers. WP Engine takes the 
hassle of site migration and bundles into a simple WordPress 
migration plugin, so you can migrate your website with the click 
of a button.

If you do not use WP Engine, there are other backup and 
site clone tools that will help you accomplish migration in a 
few relatively easy steps. Some commonly used plugins are: 
Duplicator, All-in-One WP Migration, and BackupBuddy.

Review.
Agile development is often referred to as the “right” way to 
develop as a team, and for good reason. Not only does it 
prevent burnout and increase team morale, it also opens 
visibility and communication for your stakeholders and allows for 
rapid iteration of new features. It doesn’t take much to see the 
inherent value for all parties involved: your end-user, your team, 
and your stakeholders. Inevitably, the path to Agile will be clumsy 
and confusing at first, but the end result well worth the any 
stumbles along the way. Those who have used Agile methods 
come away as strong believers because of how efficient, 
manageable, and visible their projects become. To get started, 
gather your team in a room and hash out your daily tasks and 
calendars. Find where there is wasted time, and resolve to fix 
it in your first, second, or third Sprints. In time what once was 
arduous and manual work will come more easily and faster, and 
your website’s end users will be delighted by it. 

https://newrelic.com/application-monitoring
https://newrelic.com/application-monitoring
https://wpengine.com/application-performance/
https://wordpress.org/plugins/stream/
https://wordpress.org/plugins/sucuri-scanner/
https://wordpress.org/plugins/sucuri-scanner/
https://wpengine.com/support/wp-engine-automatic-migration-powered-by-blogvault/
https://wpengine.com/support/wp-engine-automatic-migration-powered-by-blogvault/
https://wordpress.org/plugins/duplicator/
https://wordpress.org/plugins/all-in-one-wp-migration/
https://ithemes.com/purchase/backupbuddy/


13

WHITE PAPER The ultimate guide to Agile development on WP Engine.

Janna Hilferty
Janna Hilferty is a CX Operations Content Specialist at WP Engine. 
She loves both technical and free-form writing, hiking with her 
dog, and painting with all the colors of the wind. In her free time 
you can find her blogging, smoking a cigar, or watching cheesy 
documentaries.

About the author. 



About WP Engine.
WP Engine is the world’s leading WordPress digital experience 
platform that gives companies of all sizes the agility, performance, 
intelligence, and integrations they need to drive their business 
forward faster. WP Engine’s combination of tech innovation and 
an award-winning team of WordPress experts are trusted by over 
70,000 companies across 130 countries to provide counsel and 
support, helping brands create world-class digital experiences. 
Founded in 2010, WP Engine is headquartered in Austin, Texas, 
and has offices in San Francisco, California; San Antonio, Texas; 
London, England; Limerick, Ireland, and Brisbane, Australia. 
www.wpengine.com

http://www.wpengine.com


15

WHITE PAPER The ultimate guide to Agile development on WP Engine.

wpengine.cominfo@wpengine.comWP Engine 504 Lavaca Street, Suite 1000, Austin, Texas 

http://wpengine.com
mailto:?subject=

